Entropy-Based Greedy Algorithm for Decision Trees Using Hypotheses
نویسندگان
چکیده
منابع مشابه
On Greedy Algorithms for Decision Trees
In the general search problem we want to identify a specific element using a set of allowed tests. The general goal is to minimize the number of tests performed, although different measures are used to capture this goal. In this work we introduce a novel greedy approach that achieves the best known approximation ratios simultaneously for many different variations of this identification problem....
متن کاملEfficient Non-greedy Optimization of Decision Trees
Decision trees and randomized forests are widely used in computer vision and machine learning. Standard algorithms for decision tree induction optimize the split functions one node at a time according to some splitting criteria. This greedy procedure often leads to suboptimal trees. In this paper, we present an algorithm for optimizing the split functions at all levels of the tree jointly with ...
متن کاملBlock-Based Connected-Component Labeling Algorithm Using Binary Decision Trees
In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based sc...
متن کاملGreedy Algorithm for Construction of Decision Trees for Tables with Many-Valued Decisions
In the paper, we study a greedy algorithm for construction of approximate decision trees. This algorithm is applicable to decision tables with many-valued decisions where each row is labeled with a set of decisions. For a given row, we should find a decision from the set attached to this row. We use an uncertainty measure which is the number of boundary subtables. We present also experimental r...
متن کاملAn asymmetric entropy measure for decision trees
In this paper we present a new entropy measure to grow decision trees. This measure has the characteristic to be asymmetric, allowing the user to grow trees which better correspond to his expectation in terms of recall and precision on each class. Then we propose decision rules adapted to such trees. Experiments have been realized on real medical data from breast cancer screening units.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2021
ISSN: 1099-4300
DOI: 10.3390/e23070808